Modelling long-term heart rate variability: an ARFIMA approach.

نویسندگان

  • Argentina S Leite
  • Ana Paula Rocha
  • M Eduarda Silva
  • Ovídio Costa
چکیده

Long-term heart rate variability (HRV) series can be described by time-variant autoregressive modelling. HRV recordings show dependence between distant observations that is not negligible, suggesting the existence of long-range correlations. In this work, selective adaptive segmentation combined with fractionally integrated autoregressive moving-average models is used to capture long memory in HRV recordings. This approach leads to an improved description of the low- and high-frequency components in HRV spectral analysis. Moreover, it is found that in the 24-h recording of a case report, the long-memory parameter presents a circadian variation, with different regimes for day and night periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond long memory in heart rate variability: an approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity.

Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. Th...

متن کامل

تغییرپذیری ضربان قلب Heart rate variability))

Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...

متن کامل

تغییرپذیری ضربان قلب Heart rate variability))

Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...

متن کامل

ARFIMA-GARCH modeling of HRV: clinical application in Acute Brain Injury∗

In the last decade, several HRV based novel methodologies for describing and assessing heart rate dynamics have been proposed in the literature with the aim of risk assessment. Such methodologies attempt to describe the non-linear and complex characteristics of HRV, and hereby the focus is in two of these characteristics, namely long memory and heteroscedasticity with variance clustering. The A...

متن کامل

Detection of long-range dependence and estimation of fractal exponents through ARFIMA modelling.

We evaluate the performance of autoregressive, fractionally integrated, moving average (ARFIMA) modelling for detecting long-range dependence and estimating fractal exponents. More specifically, we test the procedure proposed by Wagenmakers, Farrell, and Ratcliff, and compare the results obtained with the Akaike information criterion (AIC) and the Bayes information criterion (BIC). The present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedizinische Technik. Biomedical engineering

دوره 51 4  شماره 

صفحات  -

تاریخ انتشار 2006